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Abstract We present the Spiral Classification Algorithm (SCA), a fast and accurate algorithm for classifying electrical spiral waves

and their associated breakup in cardiac tissues. The classification performed by SCA is an essential component of the detection and

analysis of various cardiac arrhythmic disorders, including ventricular tachycardia and fibrillation. Given a digitized frame of a

propagating wave, SCA constructs a highly accurate representation of the front and the back of the wave, piecewise interpolates this

representation with cubic splines, and subjects the result to an accurate curvature analysis. This analysis is more comprehensive than

methods based on spiral-tip tracking, as it considers the entire wave front and back. To increase the smoothness of the resulting

symbolic representation, the SCA uses weighted overlapping of adjacent segments which increases the smoothness at join points.

SCA has been applied to a number of representative types of spiral waves, and, for each type, a distinct curvature evolution in time

(signature) has been identified. Distinct signatures have also been identified for spiral breakup. These results represent a significant

first step in automatically determining parameter ranges for which a computational cardiac-cell network accurately reproduces a

particular kind of cardiac arrhythmia, such as ventricular fibrillation.

Index Terms Cardiac excitation waves, isopotentials, Bézier curves, curvature, cardiac arrhythmia and fibrillation
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1 INTRODUCTION

AN estimated 81,000,000 American adults, more than one

in three, have one or more types of cardiovascular

disorders [19]. Among these, cardiac arrhythmias, such as

ventricular tachycardia and especially fibrillation, may have

devastating consequences (see Fig. 1 and [8]).
Determining the physiological conditions underlying a

cardiac arrhythmia is a grand challenge, whose resolution

may lead to innovative treatment strategies. An important

component of this quest is the mathematical modeling,

analysis, and simulation of cardiac-cell networks [7], [2],

[14]. Among the myriad existing mathematical models of
cardiac myocytes, Differential Equation Models of the
reaction-diffusion type (DEMs) are arguably the most
popular. In the context of DEMs, the above challenge can
be reformulated as follows: For what parameter ranges does a
DEM network accurately reproduce the arrhythmia?

The past two decades have witnessed the development
of increasingly sophisticated DEMs [11], ranging from 4 to
87 state variables [5], [20], [23], [27], [15], [13]. The increase
in the number of variables reflects the technological
advances in capturing the intrinsic ionic mechanisms more
accurately. The increase also leads to a simplification of the
differential equations. For example, most of the equations of
the 67-variable DEM of [15] are multiaffine, and were
obtained using the law of mass action.

Unfortunately, the increase in the number of state
variables inevitably leads to an increase in simulation time.
In particular, simulation of the 67-variable DEM is so slow
that its authors only simulated it in a single cell and even
provided initial conditions corresponding to the steady
state at different pacing rates to reduce the computation
time for assessing the dynamics associated with those rates.
In [2], we present CUDA-GPU implementations for many of
the above-cited DEMs, on both Tesla and Fermi cards, with
a dramatic reduction in simulation times. This allows us to
perform, for the first time on a desktop computer, a
2D (surface) simulation of the 67-variable DEM.

The lowest dimensional DEM known to the authors that
can accurately reproduce (experimentally) the macroscopic
behavior of cardiac cells is the 4-variable Minimal model
(MDM) of coauthors Fenton and Cherry [5]. The CUDA-
GPU implementation of the MDM is so fast, that it allows
the real-time simulation of a 500� 500 grid of cells: one
second of MDM simulation time is approximately equal to
one second of real time.
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this purpose, the Square structure has the start/end fields of
the list of open/closed polylines, and each polyline has a
next polyline field. The number of polylines and the
number of segments are also updated accordingly.

In order to efficiently match the end point of a polyline p
of a child c with the starting point of a polyline q, it is
important to know what sibling of c might have such a q.
For this purpose, we classify the polylines according to their
starting and ending faces in c, as shown in Fig. 4. This leads
to a classification of polylines that is similar to the one for
squares. In contrast to squares, however, polylines may
start and end on the same face or they may be closed (that
is, they are completely contained in c). The second case does
not require further processing. Similarly, if a polyline of
square c starts and ends on a face that is not adjacent to any
of the c’s siblings, no processing is required at this level
either. To enable this kind of analysis, a type field is added
to the polyline data structure, too.

The downside of reusing the squares while collecting
and propagating information is that the linking information
of one-segment-long polylines is lost. Consequently, one
has to store this information in a different place. For
simplicity and speedup reasons, we allocate two hash tables
X and Y of size N�N : the first is indexed by the integer
value of horizontal intersection points, the second by the
integer value of vertical intersection points. Each entry of X
and Y stores the destination point and a bit classifying it as
a horizontal or vertical intersection. This allows us to
determine whether to choose the X or the Y hash table next.
In general, unless the isolines are fractals, the number of
segments is orders of magnitude smaller than N�N . Hence,
more information acquired about the kind of isolines to
expect, may improve the size allocation, by choosing an
M << N for these tables.

2.3 Selection and Output Generation (SOG)
Procedure

The optional SOG procedure selects the isolines of interest
according to some given criterion, for example, the longest
isoline, and stores the points of these isolines in an array,
sorted by their traversal order. The size of the isolines, their
starting point and their ending points, is available at the
root of the quad-tree. This information is used to
dynamically allocate the corresponding arrays outside of
the CUDA core. The X and Y hash tables are then used to
traverse the associated isoline and dump the points
traversed in the array. This process transforms the local
sequential-linking information, into a global, random-
access information, where entry iþ1 is known to be the
successor point of entry i.

We have reconstructed the isolines of 10,000 frames, both
with PIRA and the contour function of MATLAB. The first
took 1.65 seconds while the second took 720 seconds.
Hence, PIRA had a 444.44-fold speedup compared to
contour. The platform was equipped with Intel Core i7-930
2.8 GHz LGA 1,366 130W Quad-Core Desktop Processor
with OCZ Gold 12 GB (6� 2 GB) 240-Pin DDR3 SDRAM
DDR3 1600 (PC3 12800) Low Voltage Desktop Memory and
a GPU Tesla C1060 with 240 SP cores divided equally
among 30 SMs, and 4 GB of DRAM. The SP core clock speed
was 1.29 GHz and the maximum bandwidth of memory

access was 102 GB/sec. The rest of SCA has not been
parallelized yet. However, this is easily accomplished, as
we describe in the next sections.

3 CURVATURE ESTIMATION

Propagation patterns of cardiac waves (isopotentials pro-
duced by SOG in the previous section) characterize cardiac
arrhythmia. Obstacles or deformities affect the nominal
linear motion of the waves resulting in anomalous
propagation. Reentry is one such anomalous pattern in
which cardiac waves assume spiral shapes, many of which
are precursors to more dangerous arrhythmias. When these
spiral waves break up, fibrillation, a possibly fatal arrhyth-
mia follows. In [18], authors provide experimental evidence
of atrial fibrillation being characterized by reentrant cardiac
waves breaking up into chaotic patterns.

Local geometric features like curvature can be critical in
affecting wave propagation and breakups. In [10], the
authors establish the relation between the curvature of the
isopotential and its propagation velocity. If �0 is the steady
state velocity of a linear isopotential, then the velocity of a
curved isopotential is given by � ¼ �0 � D

r , where r is the
local radius of curvature and D is a coefficient determined
by the passive properties of the cardiac medium. Thus, any
part of the isopotential that has high positive curvature
slows down and eventually breaks off. Also, the existing
arrhythmia can be classified accurately based on the
curvature of the underlying cardiac waves. Thus, an efficient
method of measuring the evolving curvature would enable
expressing emergent tissue-level behaviors. This would
further help in predicting and identifying arrhythmias.

In reality, the cardiac tissue is strongly anisotropic, with
waves propagating approximately three times faster along
the direction of the heart muscle fibers (longitudinal) than
in the transverse direction. This anisotropy can lead to
problems in measuring true wave curvature, as noted in
[28]. In practice, however, an anisotropic medium can be
rescaled according to the known ratio of diffusion coeffi-
cients along and across the fibers to recover an isotropic
medium. This rescaling can be used to extend our algorithm
to anisotropic tissue behaviors. In [28, Section 4], other
methods are discussed that can be used to adjust the
measurements so that they can be compared with isotropic
theory. We will therefore restrict our focus to isotropic
media in the following discussion.

Any method that estimates the curvature of cardiac
isopotentials must satisfy the following requirements: not
only must it be highly accurate but the method must
provide curvature values continuously along the perimeter
of the isopotential. In other words, the method must be
independent of the spatial resolution at which the iso-
potential was estimated or the grid on which the cardiac
model was numerically integrated.

The workflow of our curvature estimation technique is
shown in Fig. 5. The isopotential obtained in the previous
section is a series of points on IR2. Starting from this, our
method of obtaining a smooth curvature estimate involves
the following steps:
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1. Step 0—Preprocessing. Divides the isopotential
obtained by SOG into overlapping strips of
constant length.

2. Step 1—Bézier curve fitting. Fits each strip with a
third degree Bézier curve, thus obtaining a piecewise
degree-3 polynomial fit of overlapping Bézier
curves.

3. Step 2—Estimate curvature using symbolic analy-
sis. Curvature is calculated along the Bézier curves
using symbolic calculations.

4. Step 3—Obtain overall curvature estimate. Obtains
a smooth estimate of curvature along the entire
isopotential.

First, we divide the isopotential Iv, obtained at potential
v, into overlapping segments which we refer to as strips.
The length of each strip is controlled by the parameter
STRIP LENGTH (SL). The percentage overlap among them
is controlled by the parameter OVERLAP . This is the
initial preprocessing done before the polynomial fitting.
The following sections describe each of the remaining steps
in detail.

4 PIECEWISE BÉZIER FITTING

Most of the formalisms of curvature in IR2 involve second-

order derivative terms. This motivates a degree-3 poly-

nomial approximation to the isopotential. We fit the

isopotential with overlapping cubic Bézier curves in a

piecewise manner, thus satisfying the above-mentioned

requirements of curvature estimation.
Let the jth strip of the isopotential Iv be denoted as Iv;j.

We obtain one Bézier curve that approximates this strip up

to a certain degree of L2 error. A Bézier curve approxima-

tion for Iv;j would have the following parametric form,

where t 2 ½0; 1�:

XjðtÞ ¼ ð1� tÞ3P 0
j þ 3tð1� tÞ2P 1

j þ 3t2ð1� tÞP 2
j þ t3P 3

j ð1Þ

YjðtÞ ¼ ð1� tÞ3Q0
j þ 3tð1� tÞ2Q1

j þ 3t2ð1� tÞQ2
j þ t3Q3

j : ð2Þ

Here, P 0
j � P 3

j and Q0
j �Q3

j are the control points of the

Bézier curves, which approximate the isopotential strip

along x- and y-axes, respectively. To sample from this

curve, we evaluate the above-mentioned expressions over

the interval t 2 ½0; 1�. Terminal control points P 0
j , P 3

j , Q0
j , and

Q3
j coincide with the start and end points of the strip,

respectively. The fitting procedure, adapted from [17] and

[24], optimizes the intermediate control points P 1
j , P 2

j , Q1
j ,

and Q2
j to minimize the least squared error. We assume

uniform parametrization of t in ½0; 1� for each segment. The

error functions for fitting Iv;j are

Ex ¼
XSL

i 1

½xi �XjðtiÞ�2; Ey ¼
XSL

i 1

½yi � YjðtiÞ�2;

where ðxi; yiÞ denotes the ith point on the isopotential strip.
On replacing (1) and (2) in the above error functions,
respectively, we obtain

XSL

i 1

�
xi�ð1� tiÞ3P 0

j � 3tð1� tiÞ2P 1
j � 3t2i ð1� tiÞP 2

j � t3i P 3
j

�2
;

XSL

i 1

�
yi�ð1� tiÞ3Q0

j �3tið1� tiÞ2Q1
j � 3t2i ð1� tiÞQ2

j � t3i Q3
j

�2
;

as expressions for Ex and Ey, respectively. We show the
calculations only for Ex. For Ey, the expressions follow from
those for Ex. Control points P 1

j and P 2
j can be obtained at

the minimum value of Ex by

@Ex
@P 1

j

¼ 0;
@Ex

@P 2
j

¼ 0:

Solving the above two equations we obtain the following
expressions for P 1

j and P 2
j :

P 1
j ¼

�j2�
j
1 � �

j
3�

j
2

�j1�
j
2 � �

j
3

2
; P 2

j ¼
�j1�

j
2 � �

j
3�

j
1

�j1�
j
2 � �2

3
j
;

where, �1; �2; �3; �1 and �2 for the jth segment are given by

�1 ¼ 9
XSL

i 1

�
t2i ð1� tiÞ

4�;

�2 ¼ 9
XSL

i 1

�
t4i ð1� tiÞ

2�;

�3 ¼ 9
XSL

i 1

�
t3i ð1� tiÞ

3�;

�1 ¼ 3
XSL

i 1

�
tiðxi � ð1� tiÞ3P0 � t3i P3Þð1� tiÞ2

�
;

�2 ¼ 3
XSL

i 1

�
t2i ðxi � ð1� tiÞ

3P0 � t3i P3Þð1� tiÞ
�
:

The fitting procedure described above is sequential in
nature. However, for all the strips, one can run this
procedure in parallel, by using a different CUDA-thread
on the GPU cards. Although we have not done this yet, this
is a simple adaptation of this algorithm. To make the
curvature estimates smooth, we fit the curves on over-
lapping segments, as explained in the next section.

5 WEIGHTED AVERAGE-BASED IMPROVEMENT

After each strip is fit with cubic Bézier curves as explained
above, we improve the smoothness of the overall fit. A pure
piecewise fitting approach would create discontinuities in
the derivative of the isopotential approximation at the
points where two curves meet. We ensure that derivatives
up to second order are well defined everywhere on the
isoline. To do this, fitting is performed on overlapping
strips. Parameter OVERLAP determines the percentage
overlap between adjacent strips of the isopotential.
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Fig. 5. Block diagram for curvature estimation.



Consider a part of the isopotential that has two adjacent
overlapping strips with indices j and jþ 1. To define the
Bézier curve fit for the part of the isoline covered by the
two strips, we use a weighted average-based method.
Suppose the curves describing the two strips are fj and
fjþ1. Then, the fit for the region covered by the two strips is
given by wjfjðtjÞ þ wjþ1fjþ1ðtjþ1Þ, where wjþ1 þ wj ¼ 1. In
essence, the influence of the adjacent curves on the fit is
gradually varied in the region of overlap. In the region
where there is no overlap, the fit is completely described
by the only Bézier curve corresponding to that strip. As
one enters the region of overlap, the fit is a weighted
average of the two Bézier curves corresponding to adjacent
strips. The weights are varied linearly in our scheme, as
shown in Fig. 6. The same weighted-average smoothing is
performed for the derivatives and the curvature values.

Each Bézier curve is a third degree polynomial. In the
overlapping region, the fit is a weighted average of two
cubic polynomial functions. Thus, even in the overlapping
region the fit is C2 smooth, rendering it amenable to
curvature estimation (described in the next section). The
smoothing described above can also be performed in
parallel. The weighted-average based scheme is different
from [16], which uses cubic splines to fit the isopotentials.

6 CURVATURE ESTIMATION USING MATLAB
SYMBOLIC COMPUTATION

We use symbolic computations in MATLAB to evaluate
curvature along the isopotential. This constitutes step 2 of
our method listed above. The fitting procedure described
above provides a set of smooth Bézier curves that describe
the isopotentials. As these are closed form expressions, they
can be manipulated symbolically to calculate the magnitude
of the curvature along the isopotentials. MATLAB’s sym-
bolic toolbox provides the facility to declare symbolic
variables, construct functions out of them and operate on
those functions. Once the operations yield the expressions
of interest, they can be evaluated at arbitrary resolution by
suitably specifying the interval for the symbolic variables.

In our case, we obtain the functions XjðtÞ and YjðtÞ for
each strip. The absolute curvature of the strip of the
isopotential is derived using elementary calculus

�jðtÞ ¼
jr0jðtÞ � r00j ðtÞj
jr0jðtÞj

3
; ð3Þ

where, rjðtÞ ¼ ½XjðtÞ; YjðtÞ� is the position vector described
by the Bézier curve. The grid size for all the cardiac
simulations is in the order of microns, thus, the unit of the
curvature measured is ð�mÞ 1. The important point to note
is that XjðtÞ, YjðtÞ and thus rjðtÞ are managed as symbolic
expressions which are functions of the symbolic variable t.

Thus, �jðtÞ is obtained in closed form as an expression in t.

Symbolic operations on rjðtÞ are performed using MA-

TLAB’s symbolic math toolbox [22].
After obtaining closed form expressions for curvature,

their continuity ensures that we can evaluate them at any

resolution of the parameter t. This translates to obtaining a

continuous estimate of curvature along the perimeter of

the isopotential.
Step 3 of our method evaluates these curvature functions

along the isopotential using the weighted approach

described in the previous section. Currently, we maintain

uniform resolution for t along all the strips. Adapting this to

the shape of the isoline is part of our future work. In

particular, the information stored in the quad-tree of PIE,

for example, the filling factor of the area associated with its

nodes might facilitate a fast and accurate breakup of the

isoline in isoline strips, improving on the idea in [16].

An alternative approach to curvature estimation involves

precomputing the generic form of the curvature function for

a Bézier curve. Consider a curve rðtÞ ¼ ½XðtÞ; Y ðtÞ� where

XðtÞ and Y ðtÞ are described by Bézier curves in (1) and (2),

respectively. Also let ax ¼ �P 0
j þ 3P 1

j � 3P 2
j þ P 3

j ; bx ¼
3P 0

j � 6P 1
j þ 3P 2

j ; cx ¼ �3P 0
j þ 3P 1

j , dx ¼ P 0
j and ay; by; cy; dy

be defined symmetrically. Expressions ax . . . dx and ay . . . dy
define the curves XðtÞ and Y ðtÞ in the nominal polynomial

form, for example, XðtÞ ¼ axt
3 þ bxt2 þ cxtþ dx. Now

jr0ðtÞ � r00ðtÞj ¼ X0ðtÞ:Y 00ðtÞ � Y 0ðtÞ:X00ðtÞ
¼ ½12ðbxay � axbyÞ þ 6ðaxby � bxayÞ�t2

þ ½6ðcxay � axcyÞ�tþ 2½bycx � bxcy�:

In the same way, we can calculate

jr0ðtÞj ¼ ½r0ðtÞ:r0ðtÞ�1=2

¼ ½ð3axt2 þ 2bxtþ cxÞ2 þ ð3ayt2 þ 2bytþ cyÞ�1=2:

Using the above expressions, the curvature of each strip can

be calculated. This method is also amenable to parallel

computation as it does not need the symbolic computational

toolbox of MATLAB. We have implemented both techni-

ques. The curvature for the whole isoline is calculated using

the weighted average-based method as explained above.
The runtimes for the curve fitting and curvature calcula-

tion routines depend on the length of the isopotential. The

extraction process checks each grid square for a possible

point of the isopotential. The number of edges on a

n� n grid can be calculated by solving the following

recurrence:

EðnÞ ¼ Eðn� 2Þ þ 4nþ 4ðn� 3Þ þ 8

Eð1Þ ¼ 4; Eð2Þ ¼ 8:

The solution is given by

EðnÞ ¼ �2ð�1Þn þ 2nðnþ 1Þ � 2:

Hence the maximum length of the isoline is Oðn2Þ, which

bounds the number of operations in the fitting and

curvature routines to Oðn2Þ.
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Bézier fit. Isopotentials are shown for intermediate frames

in dotted blue. As the spiral rotates, its tip tracing a circular

trajectory, the basic shape of the spiral isopotential does not

change. As the basic shape of the wave remains unchanged,

we would expect the curvature trend to remain the same

over time. The curvature trend is shown is Fig. 8c. The

region of maximum curvature corresponds to the spiral tip

which remains around the center of the isopotential

throughout the simulation. The rest of the isopotential

shows a relatively lower curvature. This trend characterizes

circular-core reentrant spiral waves in the heart.
Case 2. Reentry with hypocycloidal core: It is not always the

case that the tip is located around the center of the spiral

wave. To simulate asymmetric shapes, we generated waves

whose tips trace hypocycloidal trajectories. In this case

study, a tissue of size 1;024� 1;024 was simulated using the

Minimal model [5]. The isopotential was extracted again for

u ¼ 0:7 (where u is a state variable of the Minimal model)

and the rate at which the frames were processed was once

every 10 ms. A typical frame of the simulation can be seen

in Fig. 9a. Both the isopotentials extracted and the Bézier fits

are shown for the first and the last frames of the simulation.

The intermediate dotted blue lines are isopotentials for

some of the intermediate frames.
As the tip rotates, the length of the wave changes and at

times, the tip is not the center of the isopotential. This
turning causes the shape of the wave to become asym-
metric. The turn of the spiral is evident in the curvature
trend in Fig. 9c. As the length of the spiral changes, the
region of highest curvature shifts on the curvature trend.
This further demonstrates that a trend of morphological
features like curvature, can capture the dynamics of
different types of cardiac arrhythmias.

Case 3. Reentry with linear core: In practice, spiral waves

may exhibit more complex behavior. In the presence of an

obstacle or deformity in the medium, the rotating waves

may assume linear trajectories. We studied such waves in

this case study by simulating a tissue of 1;024� 1;024 cells

using the Minimal model [5] and processed the simulation

frames at a rate of once every 10 ms. Isopotential extraction

was done for a scaled level of u ¼ 1:0. Fig. 10a shows a
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Fig. 8. Results for case study 1: reentry with circular core. For the
curvature trend, the perimeter and the curvature are unitless and time is
in steps of 10 ms.

Fig. 9. Results for case study 2: reentry with hypocycloidal core. For the
curvature trend, perimeter is measured in �m, curvature in ð�mÞ�1 and
time is steps of 10 ms.

Fig. 10. Results for case study 3: Reentry with linear core. For the
curvature trend, perimeter is measured in �m, curvature in ð�mÞ�1 and
time is in steps of 10 ms.



snapshot of the simulation. The linear trajectory along
which the wave rotates can be seen with the tip of the wave
at one end. Fig. 10b shows the evolving isopotential. It starts
from the solid isopotential line of Fig. 10b and ends at the
other solid isoline.

As shown in Fig. 10c, during its linear motion, the wave
has three regions of high curvature. The first two are
present at the ends of the linear path of the tip. As always,
the highest curvature is found at the tip which separates the
wavefront and the wave back. As the tip moves along the
linear path, the separation between curvature peaks
corresponding to the high curvature regions, changes. The
highest peak starts near the left peak that corresponds to the
first high curvature bend of the isopotential. With time, as
the tip moves down to the other end of the linear path, the
central curvature peak shifts toward the right peak.

Case 4. Spiral wave breakup: We study the onset of
fibrillation in this case study. The spatiotemporal definition
of the fibrillating myocardium involves the breakup of
reentrant waves [18]. This breakup creates spirals which
interact to produce emergent behavior. Thus, predicting the
occurrence of spiral breakup is crucial to the problem of
predicting fibrillation. A tissue of 1;024� 1;024 cells was
simulated using the Beeler-Reuter model [4]. Spiral breakup
occurs at a very short time scale. Therefore, the frames
(output) of the simulation were processed at the rate of
once every 1 ms.

Fig. 11a shows one simulation frame, where the first
breakup has already occurred. We tracked the isopotential
of value V ¼ �3 mV (where, V is the membrane potential
variable in the model) until the first breakup occurred. As
we approached the moment of detachment, the isopotential
showed a dent near the site of break up. This change in
shape translated to the creation of a high curvature region.
The changing shape of the isopotential is shown in Fig. 11b.
Again, the isopotential and the polynomial fits are shown

for the first and last step, and the intermediate steps are

shown in dashed lines. As compared to other studies, there

seem to be fewer intermediate curves. This is because, with

a small time step of 1 ms, most of the frames do not show

any change, leading to overlapping isopotentials. The time

scale at which detachment occurs forced us to increase the

processing rate of the frames of the simulation.
Fig. 11c shows the trend of curvature as the isopotential

evolves toward breakup. Just before detachment, we see

high curvature corresponding to the evolving site of

breakup. Thus, the gradual build up of a high curvature

site on the wave is a strong indication of future breakup

leading to eventual fibrillation.
Case 5. Cycloidal core: A tissue of 402� 402 cells was

simulated using the 3-variable model of [12] and the frames

were processed at the rate of once every 10 ms. The tip of

the spiral followed a cycloidal trajectory. In this process, the

length of the contour, estimated at a normalized level of

u ¼ 0:7 (where u is a state variable of the model), did not

remain constant. The trajectory traversed by the tip can be

observed in the isoline evolution shown in Fig. 12b. The

weighted average-based fit is shown only for the first and

last frames. As shown in Fig. 12c, a region of high curvature

is found near the tip of the spiral. The changing position of

the curvature peak reflects the path traversed by the tip

along its trajectory.
Case 6. Epicycloidal core: In this case study, a tissue of

402� 402 cells was simulated using the 3-variable model of

[12], using a processing rate of once every 10 ms. In this

case, the tip follows an epicycloidal trajectory. Fig. 13a

shows a typical frame of the simulation. The isopotential

and curvature evolution show the traversal of the tip of the
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Fig. 11. Results for case study 4: spiral break up. For the curvature
trend, perimeter is measured in �m, curvature in ð�mÞ�1 and time is in
steps of 1 ms. Fig. 12. Results for case study 5: cycloidal core. For the curvature trend,

perimeter is measured in �m, curvature in ð�mÞ�1 and time in steps of
10 ms.





The curvature of the waves was recorded using our
algorithm, as they transformed from planar to spirals. Fig. 16
plots the curvature trend for isopotentials of value u ¼ 0:7.
Initially, when the waves are planar the curvature is 0. The
obstacle causes the slowing down of a part of the wave,
resulting in small curvature peaks. These peaks developed
into sustained patterns as the obstacle-induced arrhythmia
sets in. The frames of the simulation were processed at the
rate of once every 10 ms.

9 RELATED WORK

Previous work of one of the authors, [16], is most closely
related to the proposed algorithm. There are two main
differences. First, our GPU-based approach of identifying
and extracting isolines in each frame is new. This enables
fast processing of simulation results for curvature analysis.
The second difference lies in the piecewise-smooth poly-
nomial approximation performed to estimate the curvature.
The authors in [16] use splines to approximate the isoline.
The uniform-length strips and their cubic Bézier curve fits
used in SCA are amenable to GPU-based parallel methods.

The wave curvature and the refractory period of the
cardiac cells influence the motion of cardiac waves. The role
of curvature in wave propagation was reported in [10]. The
relation between wave curvature and velocity explained in
Section 3, is analyzed in this work, specifically for the
meandering of spiral waves. The authors in [6] show that
the curvature of a propagating wave front can cause slow
conduction and block in normal and homogeneous tissue.
They identify conditions based on curvature that would
lead to wave detachment.

In [9], the effect of curvature on propagation speed, the
action potential duration, and the refractory period is
studied. In the recent work of [26], multiple spirals and
their interactions were investigated. The authors report that
the velocity-curvature relation might not apply directly to
regions with altered source-sink relationships, which in-
volves sites of wave collisions and spiral cores.

10 CONCLUSIONS

Technological developments within the graphics processing
community, NVIDIA in particular, coupled with theoretical
advances in the computer-aided verification community,
have set the stage for fast simulation, powerful analysis,
and accurate prediction of complex biological processes. In
this paper, we have presented a key component of such a
framework: a parallel curvature analysis algorithm that
given a series of frames generated via simulation or optical

mapping produces a curvature-based signature of the
wave/spiral captured in the frames. Our isopotential
reconstruction algorithm takes advantage of NVIDIA’s
Tesla and Fermi graphics processing cards, and the
associated CUDA architecture. Our results demonstrate
speed-up by a factor of 444.44 for isopotential reconstruc-
tion compared to the MATLAB-based contour algorithm.
Our case studies identified distinct signatures for various
forms of cardiac arrhythmias (eight in total), which may be
used to classify a wave by its spiral type. We plan to
implement accurate classifiers that would use the curva-
ture-based signature as the main discriminating feature to
label a given simulation with one of the arrhythmias
encountered in the training phase. We are currently
working on parallelizing the curve fitting and signature-
generation components of the SCA algorithm and further
expanding the set of case studies.
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